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ABSTRACT 

Let  Y be a Gorens te in  tr igonal  curve wi th  g :=  Pa(Y) ~ 0. Here we s t udy  

t he  theory  of special linear sys t ems  on Y, ex tend ing  the  classical case of 

a s m o o t h  Y given by Maroni  in 1946. As in the  classical case, to s t udy  

it we use  the  min imal  degree surface scroll containing the  canonical  model  

of  Y. The  answer  is different if the  degree 3 pencil  on Y is associa ted to 

a line bundle  or not.  We also give the  easier case of special linear series 

on hyperell ipt ic curves.  T h e  unique  hyperell iptic curve of genus  g which is 

not  Gorens te in  has  no special spanned  line bundle.  

1. I n t r o d u c t i o n  

The main aim of this paper is the extension to singular Gorenstein curves of the 

theory of special linear systems on trigonal curves. The classical case of a smooth 

curve is due to Maroni (see [Ma] or [MS], Prop. 1). To have a good picture of 

linear series on a singular curve Y, it is essential to know even the linear series 

associated to rank 1 torsion free sheaves which are not locally free. The main step 

is the classification of all such rank 1 torsion free sheaves, A, with h 1 (Y, A) r 0 

and which are spanned. If Y is Gorenstein, the associated linear systems are the 

so-called free linear systems introduced in [HI and [C], but we will not use their 

beautiful theory, just working always with spanned sheaves. Then to any such 

spanned A one can "add base points" and obtain another rank 1 torsion free 

sheaf B with A C B and h~ A) = h~ B). Vice versa, if we start  with B, the 

sheaf A is the subsheaf of B spanned by H~ B). If Y is singular, A may be not 

locally free even if B is a line bundle. Furthermore, for any fixed A and any fixed 

integer x _> 2 the set of all such B's with deg(B) = deg(A) + x may be reducible. 
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For instance, if Y has just one ordinary node, P, the set of all effective degree 

2 divisors on Y is the disjoint union of two algebraic sets: the two-dimensional 

variety, S', of all degree two Cartier divisors and the one-dimensional variety, S", 

of all divisors P + Q with Q E Y~eg. Take x = 2; we start with A which is not 

locally free at P. If we add an element of S' we obtain a non-locally free sheaf, 

while if we add an element of S" we obtain a line bundle (see Remark 2.12); 

since to be locally free is an open condition, we obtain in this way quite often 

reducible W~(Y)'s. For curves with only planar singularities one can use [BGS 1 

to have a bound for the dimension of this garbage and hence to have information 

concerning dim(W~(Y)). 

First, we study special linear systems on singular hyperelliptic curves, using 

their classification proven in [EKS], Appendix with J. Harris. Here the situation 

is very different for Gorenstein hyperlliptic curves (see Proposition 2.3) and for 

the unique non-Gorenstein one, T(g) (see Theorem 2.4 and Remark 2.5). In 

particular T(g) has no special spanned line bundle (except of course OT(a)). 
Then we study Gorenstein trigonal curves using the existence of a minimal degree 

ruled surface S c pg-1 containing the canonical model of Y. By [RS], Th. 3.6, 

S is the cone over a rational normal curve of pg-2 if and only if the degree 3 

spanned torsion free sheaf, L, on Y is not locally free. If this is the case, the 

theory of special divisors on Y is very simple (see 2.7, 2.8 and 2.9). If L is locally 

free we show that  the picture is exactly as in the smooth case for spanned line 

bundles of degree at most g -  1 (see Theorem 2.10 and Corollary 2.11). Then we 

consider a spanned torsion free sheaf A with deg(A) <_ g - 1 which is not locally 
free on a set Sing(A) ~ @. If Y has only ordinary nodes or ordinary cusps at each 

point of Sing(A), we show that the picture is described by the spanned special 

line bundles on the partial normalization, C, of Y in which we normalize Y only 

at each point of Sing(A) (see Theorem 2.14 and Corollary 2.16). We remark 

that  the Maroni invariant of C depends on the Maroni invariant of Y and on the 

position of the set Sing(A) C S in the sense of Definition 2.12. 

ACKNOWLEDGEMENT: We thank the authors of [RS] for sending us their 

preprint. This research was partially supported by MURST (Italy). 

2. T h e  resu l t s  

We work over an algebraically closed field K. We will always use the following 

notation. Y is an integral projective curve, g := Pa(Y) and 7r: X --+ Y is the 

normalization. Let A be a rank 1 torsion free sheaf A on Y. Set Sing(A) := 

{P E Y: A is not locally free at P}. Hence Sing(A) C_ Sing(Y). The integer 
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deg(A) is defined by the Riemann-Roch type formula x(A) = deg(A) + x(Oy).  
By the duality for one-dimensional Cohen-Macaulay schemes ([AK]), we have 

hi(Y, A) = h~ Horn(A, wy)). We have deg(Hom(A, wy)) = 2 g - 2 - d e g ( A )  even 

if Y is not Gorenstein ([Co], part 2) of Prop. 3.1.6), but we need this formula only 

for a Gorenstein curve. By localy duality we have Hom(Hom(A, wy), wy) ~ A. If 

h~ A) >_ 2, we will write IAI for the associated complete linear system; however, 

we will use the notation IAI only when A is spanned; if Y is Gorenstein, the sheaf 

A is spanned if and only if the linear system IAI is free in the sense of [C]. We 

want to study the rank 1 torsion free sheaves L on Y with hl(Y,L) _> 2 and 

h~ L) _> 2. Since deg(Hom(L, Wy)) = 2g - 2 - deg(L), either deg(L) _< g - 1 

or deg(Hom(L, wy)) _< g - 1. Hence it is harmless to assume deg(L) <: g - 1. 

Since the subsheaf, L',  of L spanned by H~ L) has h~ L') = h~ L) >_ 2, 
hi(Y, L') >_ hi(Y, L) _> 2 and deg(L') _< deg(L), we will study only the spanned 

special rank 1 torsion free sheaves with degree at most g - 1; notice that even if 

L is locally free, L I may be not locally free and hence we cannot avoid to study 

non-locally free sheaves even if we are interested only in special line bundles. 

LEMMA 2.1: Let Y be an integral projective curve and ~r: X -4 Y its nor- 

malization. Let L be a rank 1 torsion free sheaf on Y. The natural map 
u: H~ L) -4 H~ ~*(L)/Tors(lr* (L))) is injective. 

Proo~ Set z := h~ L). We may assume z > 0. It is sufficient to prove that for 

z - 1 general points Pi, 1 < i < z - 1, of Y, there is a E H~ L) with a(Pi) = 0 
for every i and e(u) r 0. Since rank(L) = 1 and z = h~ L), for a general 

P E Y there i s a  E H~ witha(P~) = 0 for i_< z - l ,  a(P) r O. Since 

7rl~--l(Yreg): 7r-l(Yreg) -4 Yreg is an isomorphism and P �9 Yreg, it is obvious that  

u(a)(r-l(P))  r 0 and hence u(a) r O. 

Remark 2.2: For every integer g > 2 there is a complete classification of all pairs 

(Y, L) such that Y is an integral projective curve with pc(Y) = g and L is a rank 

1 torsion free sheaf on Y with h~ L) _> 2 and deg(L) = 2 ([EKS], Th. A of the 

Appendix with J. Harris). Every such L is spanned and has h~ L) = 2. For 

each Y the sheaf L is unique. The sheaf L is locally free if Y is Gorenstein and in 

this case (.dy ~ L | . There is a unique hyperelliptic curve (call it T(g)) which 

is not Gorenstein. The curve T(g) is rational and it has a unique singular point; 

call it P; P is unibranch; call O E p1 the unique point with 7r(O) -- P.  The 

conductor of OT(g),p in Op1,o is the maximal ideal, m, of the local ring Opl ,o;  

if t is a generator of m, OT(g),p is the subring of Opl ,o  generated by 1 and the 

powers t x with x >_ g -}- 1; for g -- 1 we would obtain an ordinary cusp. For every 
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integer r with 1 < r < g - 1 there is a unique rank 1 torsion free sheaf, T(g, r), 

on T(g), with deg(T(g,r)) = 2r and h~ = r + 1 ([EKS], Wh. A of 

the Appendix with J. Harris); we have T(g, r) = lr.(Op1 (r)) and this definition 

shows immediately that h~ r)) = h~ 1, Op1 (r)) = r + 1 and that  

the function "degree" behaves badly under push-forwards. Since every proper 

subsheaf of T(g, r) has smaller degree and it is special, every proper subsheaf, F,  

of T(g, r) has h~ F) <_ r by the weak part of Clifford's theorem proved in 

[EKS], Th. A of the Appendix with J. Harris. Thus T(g, r) is spanned. 

PROPOSITION 2.3: Leg Y be an integral projective Gorenstein hyperelliptic curve 

with g := p~(Y) >_ 2. Let L E Pic2(y) be the hyperelliptic line bundle. Let A be 

a rank i spanned torsion free sheaf on Y with hi(y,  A) ~ O. Then A is locally free 
and there exists an integer r with 1 < r < g - 1 such that A ~- L | deg(A) = 2r 

and h ~ (Y, A) = r + 1. 

Proof: Let f :  Y ~ p1 be the degree 2 morphism induced by L. Hence f induces 

an involution, a, on Yreg. Since A is spanned and AIY~eg is locally free, the pair 

(Y, H~ A)) induces a morphism r Yreg --~ pr ,  r : :  h~ A ) - 1 .  By the duality 

for Cohen-Macaulay schemes ([AK]) we have h~ Hom(A, wy)) = hi(Y, A) r O. 

Hence A may be seen as a subsheaf of wy. Since f is the morphism induced by 

H~ wy) and A is a subsheaf ofwy, for every P E Yreg we have r -- r  

i.e. r factors through f[Yreg. Hence for general points P1 , . . . ,  Pr of Y~eg we have 
h~ A ( - P 1 -  a(P1) . . . . .  P r -  a(Pr))) ~A 0, i.e. h~ Hom(L| ~ O. 
Since h~ L | = h~ A), A is spanned and every non-zero map L | -+ A is 

injective, we obtain L | ~ A. 

Now we will check that the proof of Theorem A of [EKS], Appendix with 

J. Harris, gives the following complete description of the special linear systems 

on the rational hyperelliptic curve T(g). 

THEOREM 2.4: Let A be a spanned rank 1 torsion free sheaf on T(g) with 

hl(T(g),A) ~ O. Then there exists a unique integer r with 1 <_ r <_ g - 1 
such that A ~- T(g, r). 

Proof: Set 

B := r*(A)/Tors(zc*(A)), r := deg(B), D := ~r*(wy)/Tors(r*(wy)). 

Hence B and D are spanned line bundles on X ~ p1. By Lemma 2.1 the 

natural map u: H~ --+ H~ is injective. It was checked in [EKS], 

p. 538, first line of Case 2, that deg(D) = g - 1 and that the natural map 
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u~: H~ wy) -4 H~ D) is an isomorphism. By the duality for locally Cohen- 

Macaulay schemes and the assumption h 1 (Y, A) r 0, A is a subsheaf of wy. 
Furthermore, B is a subsheaf of D because there is a generically injective map 

7r*(A) -4 ~r*(wy). Hence the inclusion u is an isomorphism, i.e. h~ A) = r + 1. 
There is a natural generically injective map A -~ ~r.Tr* (A) and hence a generically 

injective map A -+ 7r.(B). Since T(g, r) ~ ~r.(B) (Remark 2.2) and A is torsion- 

free, we have an inclusion A --+ T(g,r). Since h~ = h~ and 

T(g, r) is spanned (Remark 2.2), we have A -~ T(g, r). 

Remark 2.5: By Theorem 2.4 there is no spanned special line bundle on T(g) 
(except OT(9)). 

LEMMA 2.6: Let Y be an integral non-hyperelliptic Gorenstein curve with g := 

Pa(Y) _> 5. Assume that Y has two rank 1 torsion free sheaves R, L with 
deg(R) = deg(L) = 3, h~ > 2 and h~ >_ 2. Then R TM L, h~ = 2 
and L is spanned. 

Proo~ Since Y is not hyperelliptic and deg(R) -- deg(L) -- 3, we have h~ R) 
= h~ R) = 2 and both R and L are spanned. Since Y is not hyperelliptic, its 

canonical map is an embedding ([Ro], Th. 15). We will see Y as a linearly normal 

curve of degree 2 g - 2  in p9- I .  Take any degree 3 effective divisor D associated to 

R or L. Since h ~ (Y, R) = h i (Y, R) r 0, D spans a line of Pg-  1. As in the classical 

case we may associate to R (resp. L) a degree g - 2 surface SR (resp. SL) with 

Y C Sn c p9-1 (resp. Y C SL C p9-1) which is either a cone over a rational 

normal curve of pg-2 or a smooth rational curve, the first case occurring if and 

only if R (resp. L) is not locally free ([RS]). Furthermore, SR and SL are set- 

theoretically cut out by the quadrics containing Y; indeed, by [RS] the proof of 

[AM] for the case Y smooth works for Gorenstein curves; alternatively, one could 

use [Sc], Th. 3.1, to check this assertion and that deg(Sn) = deg(SL) = g - 2. 

Hence SR = SL. Since every line of SR (resp. SL) is spanned by its scheme- 

theoretic intersection with Y which is a degree 3 divisor of the pencil R (resp. 

L) we have R ~ L. 

Example 2.7: Fix integers g, r with g >_ 3 and r >_ 3. Let C be a Gorenstein 

hyperelliptic curve with pa(C) = g - 1. Let R E Pic2(Y) be the hyperelliptic 

pencil. For every integer i _> 1 set Bi := R | and let ~/i: C -+ Pi  be the morphism 

induced by the pair (Bi, H~ Bi)). Thus -),i is obtained composing ~/1 with the 

degree i Veronese embedding of p1 as rational normal curve of P~. Fix a point, 

Q, of the secant variety of the rational normal curve -/r(C) but P ~ ")'r(C); we 

allow the case in which Q is on the tangent developable of ")'r(C). Consider 
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the projection u: p r  \ {Q}  __+ pr-1 .  Since r _> 3, u[%(C) is birational. Thus 

deg(u(%(C))) = r. By the choice of Q the rational curve 0r(C) is singular. 

We see easily in arbitrary characteristic that pa(u(%(C))) _< 1. Thus u(~/r(C)) 

is a rational curve with an ordinary node or an ordinary cusp. The morphism 

% o u: C --+ pr -1  induces a subspace, Wr, of H~ Br) with dim(Wr) = r and 

Wr spanning Br. First assume that Q is not in the tangent developable of %(C), 

i.e. assume the existence of Q', Q" E 7r(C), with Q' r Q" and Q contained in 

the line ({Q', Q"}). Take any P '  e .y~-l(Q,) and P '  e 0,~-I(Q '') and let Y be the 

unique genus g curve obtained from Y gluing the points P '  and P";  if P '  and P "  

are smooth points of C, then Y is Gorenstein with an ordinary node at the image 

of P '  and P" .  The morphism induced by the pair (Br, Wr) factors through Y 

and defines a degree 2r morphism v: Y ~ pr-1.  Set A := v*(Opr-l(1)). Call 

w: C ~ Y the induced morphism with u = w o v. Thus A is a spanned degree 

2r line bundle on Y with h~ A) _> r. Since g - 1 _> 2, the hyperelliptic pencil 

of C is unique and this shows that Y is not hyperelliptic. Hence by Clifford's 

theorem ([EKS], Th. A of the Appendix with J. Harris) we have h~ A) = r. 
We have h~ w.(R))  = 2. Since p~(Y) = p~(C) + 1, the proof of [EKS], Lemma 

1 of the Appendix with J. Harris, we have 2 _< deg(w.(R)) _< 3. Since Y is not 

hyperelliptic, w.(R)  is a degree 3 torsion free sheaf on Y ([EKS], Th. A of the 

Appendix with J. Harris). Thus Y is trigonal. Vice versa, given any P ' ,  P "  

on Creg with ~I(P')  r ~/I(P"), take any Q on the line ({%(P'),~'r(P")}) and 

apply the previous construction; we obtain a trigonal curve with C as partial 
normalization, with a new ordinary node and with a spanned A E Pic2r(Y) with 

h~ A) = r. Now assume that Q is on a tangent line of %(C), say of the point 

O. If there is P E Creg with ~/1 (P) = O and P not a ramification point of ~/1, then 

we obtain a Gorenstein curve Y with C as paretial normalization, Pa(Y) = g, 
an ordinary cusp as additional singular point and with a spanned A E Pic2r(Y) 

with h~ A) = r. The remaining cases are more complicated but in principle 

understandable, because C has only planar singularities with multiplicity 2, i.e. 

(at least in characteristic 0) only singularities of type Ak, i.e. only tacnodes and, 

perhaps non-ordinary, planar cuspsl We stress that in this case we obtain Y as 

a double covering f :  Y -+ E of a rational curve with an ordinary node or an 

ordinary cusp, i.e. of a rational curve E with p~(E) -- 1. For every integer i _> 2 

every T E Pici(E) is spanned and f*(T)  gives a spanned line bundle on Y with 

deg(T) - 2r and h~ I*(T)) >_ r. In this way from one example of a sheaf on 

the curve Y we find examples for all integers r _> 2. 

THEOREM 2.8: Let Y be an integral non-hyperelliptic Gorenstein curve with g := 
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p~(Y) >_ 5. Assume that Y has a degree 3 free pencil ILl which is not base point 

free, i.e. such that the associated spanned torsion free sheaf L is not a line bundle. 

The pencil ILl is unique and it has a unique base point, P, i.e. Sing(L) = {P}. 

Assume Y of multiplicity 2 at P. There are an integral hyperelliptic Gorenstein 

curve C with p~(C) = g - 1 and a birational morphism w: C ~ Y such that 

w l w - Z ( r  "-{V}): w - l ( Y  "-{P}) -+ Y \ { P }  is an isomorphism. Let R C Pic2(C) 

be the hyperelliptic pencil. Then for all integers r with 1 < r < g - 2 the rank 

1 torsion free shea fw , (R  | on Y is spanned and has deg(w,(R| = 2r + 1 

and h~ w,(R| = r + 1. Let A be a spanned rank 1 torsion free sheaf on 

Y with deg(A) <_ g - 1. If A is not locally free we have A TM w, (R | with 

r := h~ - 1. I r A  is locally free, then deg(A) -- 2(h~ and the pair 

(I/, A) arises from C from the construction of Example 2.7. 

Proo f  By [RS], Th. 3.6, ILl is the unique degree 3 pencil on Y. Since Y is 

Gorenstein and non-hyperelliptic, the canonical map, j ,  of Y is an embedding 

(fRo], Th. 15). By assumption Sing(L) :~ 0. By [KS], Wh. 3.6, the canonical 

curve j ( Y )  C p g - I  is contained in the cone, S, over a rational normal curve, D, 

of pg-2. Projecting from the vertex, P,  of S we see that P E j ( Y )  and that 

j ( Y )  has multiplicity 2 at P.  Furthermore, {P} = Sing(L). Let v: S' -+ S be the 

blowing-up of the vertex of the cone S. Hence S' is isomorphic to the Hirzebruch 

surface Fg-2. We take as base of Pic(S') - Z | the curve, h, contracted by v and 

a fiber, f ,  of the ruling of S'. Hence v* (Os(1)) ~ Os, (h + (g - 2)f) .  Let C C S' 

be the strict transform of j ( Y )  in S' and w: C --+ j ( Y )  ~ Y the induced map. 

Since deg(h(Y)) = 2g - 2 and C .  f - 2, we have Os, (C) ~ Os, (2h + (2g - 2)f) .  

By the adjunction formula we obtain pa(C) = g - 1. We do not claim that C is 

smooth along w -1 (P), i.e. we do not claim that h(Y) has an ordinary node or an 

ordinary cusp at P. However, since S' is smooth and C.  f = 2, C is a Gorenstein 

hyperelliptic curve with pa(C) ~- g - 1 >_ 4. Call R E Pic2(C) the hyperelliptic 

pencil. Set B := w*(A)/Tors(w*(A)).  Hence B is a rank 1 spanned torsion free 

sheaf on C. The proof of Lemma 2.1 gives h~ B) _> 2, i.e. B is not trivial. 

Since pa(Y) - p~(C) = 1, the proof of [EKS], Lemma 1 of the Appendix with J. 

Harris, gives deg(A) - 1 _< deg(B) _< deg(A). Since deg(A) < g - 1 = p(~(C), we 

have hi(C, B) • O. Hence there is an integer r with B ~ R | (Proposition 2.3). 

We have deg(B) -- 2r and h~ B) = r + 1. Since pa(Y) - pa(C) = 1, we have 

deg(B) _< deg(w,(B)) _< deg(B) + 1 and h~ B) --= h~ w. (B))  <_ h~ A) + 1. 

Since Y is Gorensein but not hyperelliptic and hi(Y, A) r 0, we have deg(A) > 

2(h~ A) - 1) ([EKS], Th. A of the Appendix with J. Harris). We distinguish 

the following two cases. 
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(a) Assume deg(A) = 2 r + l .  Hence we must  have A ~- w . (B) .  Thus  h~ A) = 

r 4- 1. Since Y is not hyperelliptic,  the sheaf A must  be spanned. 

(b) Assume deg(A) = 2r. Hence we have h~ = r. Let T: X --+ C 

be the birat ional  morph i sm such tha t  7r = w o T. Since R and B are locally 

free, we have deg(T*(B))  = deg(B)  and T*(B) = r*(A)/Tors(~r*(A)). Hence 

deg(r*(A)/Tors(~r*(A))) = deg(A).  By [EKS], L e m m a  1 of the Appendix  with  

J. Harris,  A is a line bundle. In par t icular  w*(A) has no torsion and hence 

B ~- w*(A). Since A is spanned and the pair  (B ,H~  B)) induces a two to 

one morph i sm % the pair  (A, H~ A)) induces a morph i sm #: Y --+ p r - 1  with 

deg(#)  > 1. Since A is spanned,  we have deg(A) = deg(#) �9 deg(#(Y)) .  Since 

deg(#(Y))  > r - 1, we obtain  deg(#)  = 2 and deg(#(Y))  = r - 1. Hence either 

r = 2 or deg(#)  = 2, deg(#(Y))  = r - 1 and #(Y)  is either a linearly normal  

elliptic curve or a possibly singular ra t ional  curve with Pa(#(Y))  _< 1. The  curve 

#(Y)  cannot  be a smoo th  rat ional  curve because the m a p  # is induced by a 

comple te  linear system. The  curve #(Y) cannot  be elliptic, because an elliptic 

curve cannot  be the target  ( through a linear projection) of the smoo th  ra t ional  

curve ~/(C) C p r - 1 .  Hence we are in the set-up of Example  2.7. 

R e m a r k  2.9: Notice tha t  2.7 and 2.8 give a way to construct  all such spanned 

special sheaves A, since the hyperell iptic curve C is uniquely determined by Y. 

Now we s tudy  special linear systems on tr igonal  Gorenstein curves with t r igonal  

pencil  locally free, i.e. with a degree 3 morph i sm Y -+ p1.  First,  we will consider 

the case of spanned line bundles. 

THEOREM 2.10: Let Y be an integral Gorenstein projective curve with g := 

Pc(Y)  >_ 5 and L E Pic3(y )  with h~ = 2. Assume Y not hyperelliptic. 

Let A be a spanned line bundle on Y with 0 < x := deg(A) _< g - 1. Set 

r := h~ A) - 1 >_ 2. Then either A TM L | and in particular x = 3r or 

there is an effective Cartier divisor U on Y such that U is the base locus of  

Iwy - (g - x 4- r - 1)L[ and a~y ~- A | O y ( U )  | L |  

Proof." Let  m be the Maroni  invariant of the pair  (IT, L) given by [RS], Th.  3.6; 

as in the smoo th  case m is the unique integer such tha t  h~ L | = i 4- 1 if 

O ~ i < g -  m, h~  | = g - m - 1 4 - 2 ( i - g - m 4 - 1 )  = 2 i - g 4 - m 4 - 1  if 

g - m  _< i < m4-2  and h~  | = 3 i 4 - 1 - g  if /_> m4-2  ([RS], Cor. 2.5). Hence 

m is an integer wi th  (g - 4) /3  ~ m _< (g - 2)/2. Since Y is not hyperelliptic,  

L is spanned.  Since Y is Gorenstein  and not hyperelliptic,  the canonical m a p  of 

Y is an embedding  ([Ro], Th.  15) and we will see Y as a linearly normal  curve 

of p g - 1  with deg(Y) -- 2g - 2. By  [RS], Y is contained in a two-dimensional  
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smooth rational scroll S c p9-2  with deg(S) = g - 2 and 

,.~ ~ P(Opi (m) ~ Opi (g - 2 - rrt)). 

Hence S is isomorphic to the Hirzebruch surface Fe with e -- g - 2 - 2m and 

we will take as base of Pic(Fe) ~- Z | a ruling R and a curve, E, with minimal 

self-intersection, i.e. R is a line of pg-1, E 2 _ -e, E. R = 1 and R 2 -- 0. We 

have K s  = - 2 E -  ( e +  2)R, Os(1) -~ E + ( g -  2 -  re)R, Y = 3E + ( m +  2)R, 

wy = (Ks  + Y ) i Y  = (E + (m - e)R)IY (see e.g. [MS], pp. 172-173). We will 

follow the proof of the smooth case given in [MS], Prop. 1. The restriction map 

p: H~ K s  + Y)  -> H~ wr) is bijective because hi(S, Ks )  = h2(S, Ks )  = O. 

Notice that  the linear systems IAI and ]wr - AI are not empty. Fix a general 

D e IAI and a general D'  C Iwr - A I. Since A and aJy - A are locally free, the 

divisor D+D'  is defined ([C]) and D+D'  C ]coyI; here we use only that the tensor 

product of two spanned line bundles is spanned and that M |  -~ Oy  for every 

M c Pie(Y). Since p is bijective, we have r + 1 = h~ ID , | (Ks  + Y)). Since 

deg(S) = g - 2 = (Ks  + y)2  and deg(D') = 2g - 2 - x _> g - 1, the linear system 

P (H ~ (S, In, | (Ks  q- Y)))  on S has a base component, T. Call Z a general divisor 

of the moving part of P (H~ ID, | (Ks + Y))) and {Z) the corresponding 

(perhaps non-complete) linear system. Hence dim({Z}) -- r and Z is nef. If 

T E IE-t-yRI, y >_ O, {Z}  is a subseries of ( m - e - y ) R .  We have m - e - y  < g-re .  

Hence in this case A is obtained from L | adding an effective Cartier divisor of 

degree x -  3r; since h~ L | -- r + 1 and A is assumed to be spanned, we have 

A TM L | and x = 3r. Since K s + Y  = E + ( m - e ) R  -~ E + ( 3 m - g + 2 ) R ,  it remains 

the case T E ]yR[ and Z E ]E + ( g -  2 -  m - y ) R  I with 0 < y <_ g -  2 -  m - e  = m; 

here we use that Z i s n c f a n d  hence Z . E  > 0. Since dim({Z}) = r, we have 

2 + 2 ( g - 2 - m - y ) - e  >_ r + l , i . e . g - 2 y  >_ r + l .  We c a l l Z  asufficiently 

general element of {Z} (remember that for fixed D'  we may still take D general). 

Hence Z is a smooth rational curve of degree Z . H - -  g - 2 - y .  Since A is 

spanned, D'  contains the scheme-theoretic intersection T M Y and D C Z. We 

have 2 g - 2 - x  = deg(D') _< y R . Y + Z  2 = g - 2 - y ,  i.e. x >_ g - y .  I f D  

is contained in a hyperplane of Z, then x <_ deg(Z) ~- g - 2 - y, contradiction. 

Hence we have (D> -- (Z). By the geometric form of Riemann-Roch we obtain 

r = x - g + y + l , i . e . y = g - x + r - 1 .  T h u s D E I w y - ( g - x + r - 1 ) R - U  I 

with U non-negative Cartier divisor. 

With the terminology of [MS], p. 173, if A is as in the second case of the 

statement of 2.10, then A C V,~. As in the smooth case (see [MS], Cor. 2) from 

2.10 we obtain the following result. 
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COROLLARY 2.11: Let  Y be an integral Gorenstein projective curve with g := 

Pa(Y)  >_ 5 and L E Pic3(y)  with h~ L) = 2. Assume  Y not hyperelliptic. 

Le t  A be a spanned line bundle on Y with 0 < x := deg(A) _< g -  1. Set 

r :-- h ~  - 1 >_ 2. Then x >_ 3r and x -- 3r i f  and only i f  either A ~- L | or 

x = g - 1 and A ~- wy  | L *(9-1)/3. 

Now, at least if Y has only ordinary nodes or ordinary cusps as singularities, 

we will reduce the case of an arbitrary spanned rank 1 torsion free sheaf A to the 

case of a spanned line bundle, A ~, o n t h e  partial normalization, C, of Y in which 

we normalize only the subset Sing(A) of Sing(Y). C is a trigonal curve but its 

Maroni invariant does not depend only on the Maroni invariant of Y but also on 

the "position" of the set Sing(A) in the rational scroll containing the canonical 

image of Y. To make this assertion more explicit we need the following definition. 

Definition 2.12: Let S C p9-1 ,  g ~ 5, be a minimal degree surface which 

is not a cone over a rational normal curve of pg-2 .  Hence deg(S) -- g - 2 

and there exists an integer m with (g - 2)/2 ~ m < g - 2 wuch that  S 

P(Op1 (m) | Op1 (g - 2 - m)). The integer m is unique and we will call it the 

Maroni invariant of S. Take a finite subset B of S with 0 < b :-- card(B) _< g - 5. 

Fix P E B and let S1 c p g - 2  be the image of the surface S from the projection 

from P.  Since S is not a cone, $1 is a minimal degree surface of p g - 2  and it is 

not a cone, unless m = g - 3  and P is contained in the unique section of the ruling 

of S with negative self-intersection. We assume that  this is not the case. Hence 

S1 ~ P ( O p l ( m l )  | Op~(g - 3 - ml)) .  The Maroni invariant ml  of $1 is either 

m or m - 1. If  b -- 1 we stop. Assume b > 1. The image, B1, of B \ { P }  through 

the projection from P is a subset of $1 with card(B1) = b - 1. Hence we may 

apply the same construction to the pair (S1, B1). We will say that  B is good for 

S if we may repeat the construction b times without ever finding a cone. We will 

call the Maroni invariant of the last surface Sb C p g - l - b  the Maroni invariant 

of the pair (S, B) (or just of B if there is no danger of misunderstanding) and we 

will denote it by m s ( B )  (or just m ( B )  if there is no danger of misunderstanding). 

Remark  2.13: Take S and B as in Definition 2.12. If B is general in S, then B 

is good and m ( B )  = max{m - b, [(g - 1 - b)/2]}. 

Remark  2.14: Let R be the completion of the local ring of a curve at a point 

which is either an ordinary node or an ordinary cusp. Assume char(K) r 2 if R 

is the completion of an ordinary node and char(K) r 2, 3 if R is the completion 

of an ordinary cusp. Let m be the maximal ideal of R. Then every rank 1 torsion 

free module over R is isomorphic either to R or to m (see [D'S] or [Se], Prop. 3 



Vol. 119, 2000 TRIGONAL GORENSTEIN CURVES 153 

at p. 163, for the nodes, [Co], p. 24, for nodes and cusps if char(K) = 0); to avoid 

any misunderstanding with the notation of [Sc], bot tom of p. 165, we stress that 

in the nodal case as torsion free modules we allow only modules with rank 1 on 

both components of Spec(R). Now fix P �9 Sing(Y) with P an ordinary node 

or an ordinary cusp and a rank 1 torsion free sheaf A on Y with P �9 Sing(A). 

Hence A is formally isomorphic to the maximal ideal of the local ring of P in Y. 

Let u: C ~ Y be partial normalization of Y at P. Hence pc(C) = p~(Y) - 1. 

Set A' := u*(A)/Tors(u*(A)).  Notice that the maximal ideal of the local ring of 

P in Y is formally isomorphic to the germ at P of u , (Oc) .  Hence A "~ u.(A~). 

Since C is smooth at each point of u - l (P ) ,  A' is a rank 1 torsion free sheaf 

on C with A' smooth along u - l ( P ) ,  card(Sing(A')) = card(Sing(A)) - 1 and 

deg(A') = d e g ( A ) - I  ([Co], p. 18, or the proof of [EKS], Lemma 1 of the Appendix 

with J. Harris). The last equality follows also from the definition of degree 

because A ~ u. (A') 

THEOREM 2.15: Assume char(K) r 2, 3. Let Y be an integral Gorenstein pro- 

jective curve with g := p~(Y) >_ 6 and L �9 Pic3(y) with h~ = 2. Assume 

Y not hyperelliptic. Let A be a spanned rank 1 torsion free sheaf on Y.  Set 

B := Sing(A), b := card(Sing(A)), d := deg(A). Assume 0 < d < g - 1, 

0 < b <_ g - 5 and that Y has only ordinary nodes or ordinary cusps at each 

point of Sing(A). Let u: C ~ Y be partial normalization of Y at the points 

of Sing(A); hence p~(C) = g - b >_ 5. Set A' := u*(A)/Tors(u*(A)). We have 

A' E Picd-b(c). Wehaveh~  ') >_ h~ = r + l  (Lemma2.1). Sinceu*(L) 

induces a degree 3 pencil on C, C is trigonal. Let S C pg-1 be the rational nor- 

mal scroll associated to S. Then B is good for S in the sense of Definition 2.12 

and the Maroni invariant of C is the Maroni invariant re(B) of the pair (S, B). 

A' is classified by Theorem 2.10 and A ~ u.(A') .  

Proo~ Let v: S' -+ S be the blowing-up of S at each point of Sing(A) and 

a ' :  S --~ p1 the morphism induced by the ruling a: S ~ p1 which induces L. 

Notice that  each fiber of the ruling a contains at most one point of Sing(A). 

Hence each fiber of a '  is either a smooth rational curve or the union of two 

smooth rational curves with self-intersection 1 and one of them has intersection 

multiplicity at most one with C. ttence we may blow-down each of the compo- 

nents of the reducible fibers of a '  which are mapped to curves in S obtaining a 

minimal ruled surface a": S" ~ p1 containing C. We claim that S" C p g - l - b  

is obtained from S C pg-1  by the projection from the b points of Sing(A) and 

C c S ~ C pg-t-b is obtained from Y in the same way. To check the claim we 

need to check that dim((Sing(A))) = b - 1  and that for every length 2 subscheme, 



154 E. BALLICO Isr. J. Math. 

T, of Y \ Sing(A) we have dim((Sing(A)UT)) = b+ 1. Indeed the last equality for 

every r would be equivalent to the assertion that the rational map from Y to C 

obtained projecting from the set Sing(A) is the inverse of the partial normaliza- 

tion u. Fix P E Sing(A) and consider the curve Y' C pg-2  obtained projecting 

Y from P. Let Y" be the partial normalization of Y at P.  Since P is an ordinary 

node or an ordinary cusp of Y, we have Pa(Y")  = g - 1. Y "  cannot be hyper- 

elliptic because the trigonal pencil of Y is locally free. The rational map Y --+ Y' 

obtained projecting from P cannot have degree at least two because its image 

would be a rational normal curve, its degree would be two and hence Y" would be 

hyperelliptic, contradiction. Since Y has multiplicity two at P and the rational 

map Y --+ Y~ obtained projecting from P is birational, we have deg(Y') = 2 g -  4. 

Since Pa(Y) >_ g - 1, we obtain easily in arbitrary characteristic that Y' ---- Y" 

and that  Y' is canonically embedded in pg-2.  Iterating the projection b -  1 times 

we obtain the claim. Call m ( A )  the Maroni invariant of S", i.e. the integer such 

that S" -~ P(Op1 ( m ( A ) )  | Op1 (g - 2 - b - m ( A ) ) ) .  We may apply 2.8 to A'. 

The obvious isomorphism between A and u . ( A ' )  was claimed in 2.14. 

COROLLARY 2.16: Assume  char(K) ~ 2,3. Let  Y be an integral projective 

curve with g := P~(Y)  -> 5 and L E Pic3(y) with h ~  = 2. As sume  Y not  

hyperelliptic and that  Y has only ordinary nodes or ordinary cusps as singular- 

ities. Le t  A be a rank 1 spanned torsion free sheaf on Y .  Set d := deg(A) and 

r :-- h ~  A s s u m e d  < _ g - 1 .  T h e n d  >_ 3r a n d d - -  3r i f  and only i f  

A ~- L | or d = g - 1 and A ~- COy ~ L *(g-1)/a. 

It seems useful to consider the following concept; essentially, it is the reason 

why 2.15 and 2.16 work for curves with ordinary nodes and ordinary cusps. 

Definition 2.17: Let A be a rank 1 torsion free sheaf on Y. Set 6 - deg(A) :-- 

deg(~r*(A) /Tors (r*(A)) ) .  The integer 6 - d e g ( A )  will be called the &degree of 

A. 

Remark 2.18: Let A be a rank 1 torsion free sheaf on Y. We have 6 - deg(A) <_ 

deg(A) and 6 - deg(A) = deg(A) if and only if A is locally free ([EKS], Lemma 

1 of the Appendix). Furthermore, 6 - deg(A) <_ deg(A) - card(Sing(A)). Let 

u: C --+ Y be partial normalization of Y in which we normalize only the points 

of Sing(A). Then 6 - deg(A) = deg(u* (A) /Tors (u* (A) ) ) .  If char(K) r 2, 3 and 

Y has only ordinary nodes or ordinary cusps at every point of Sing(A), then 

6 - deg(A) -- deg(A) - card(Sing(A)) (Remark 2.14). 
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